If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15t^2+120t+1=0
a = 15; b = 120; c = +1;
Δ = b2-4ac
Δ = 1202-4·15·1
Δ = 14340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14340}=\sqrt{4*3585}=\sqrt{4}*\sqrt{3585}=2\sqrt{3585}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-2\sqrt{3585}}{2*15}=\frac{-120-2\sqrt{3585}}{30} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+2\sqrt{3585}}{2*15}=\frac{-120+2\sqrt{3585}}{30} $
| 22-(3c+4)=2(c+3)+3 | | (4x1-1/4)-1=(8x1-1/4)+4 | | -x+184=82 | | w/7-2=1 | | 4(w+4)-8w=-16 | | X+30+x+30x=180 | | 4x1-1/4-1=8x1-1/4+4 | | 3x=(x-1) | | −4k+17=1 | | 42=206-w | | c-18/8=6 | | 4n-8=64 | | 42=2(c-63) | | 36-7x=10+6x | | -0.52x+0.22x=7.8 | | 256=8x+18+6x | | w4− 1=3 | | 4-5n-8=-24 | | 12+8x+3=-10+3x | | 38=5b=9 | | 32+2u=10u | | 1x=1=4x=11+12x-3 | | 7=u+11/3 | | 1+8x=9=-20+2x | | -6-21=-9x=6 | | 2X^2-´x+2=0 | | 4x-1=8x+4 | | 9s-19=26 | | 3x-8/5=2x-6/6 | | 6g+4=2g+20 | | 6(t-95)=6 | | x3+10x2-11x=0 |